
Building Science with
CMake

Bill Hoffman bill.hoffman@kitware.com

Bill Hoffman
• One of 5 founders of Kitware Inc
• Originator of CMake build tool
• Ultra runner (barefoot/sandals)

Algorithms & applications
Software process & infrastructure
Support & training
Open source leadership

SOFTWARE
PROCESS

Collaborative Software R&D

Supporting all sectors
Industry, government & academia

Successful small business
Founded in 1998; privately owned
Offices in NY, NC, NM & Lyon France

Discourse on the (Scientific) Method,
Descartes 1637

DOUBTING EVERYTHING, and only
believe in those things that are
evidently true (REPRODUCIBLE)

If it’s not reproducible,
it’s not Science

Nullius in Verba

“take nobody's word for it”
Royal Society 1640

Science is becoming computation

• “Software has replaced
mathematics as the modern
language of Science” - Edward
Seidel former NSF director

• Nature (March 2012)
– Glenn Begley, former head of cancer research at

pharma giant Amgen
– Lee M. Ellis, cancer researcher at the University of

Texas

Failure of Reproducibility

Found that more than 90% of papers
published in science journals describing
"landmark" breakthroughs in preclinical
cancer research, are not reproducible,
and are thus just plain wrong.

CMake came from open science

• NIH Visible Human Project
– Data, CT/MR/Slice 1994/1995
– Code (ITK) 1999

• CMake – Cross platform build tool

How CMake Changes The Way We Build C++

• Boost aims to give C++ a set of useful libraries
like Java, Python, and C#

• CMake aims to give C++ compile portability like
the compile once and run everywhere of Java,
Python, and C#
– Same build tool and files for all platforms
– Easy to mix both large and small libraries

CMake most popular Kitware Tool

• Google Search Trends and ohloh comparisons with auto*
• 5000+ downloads per day from www.cmake.org
• Major Linux distributions and Cygwin provide CMake packages
• KDE, Second Life, CLang, many others

KDE 2006 – Tipping Point!

CMake is the most popular build tool at
38%.
• 2014 study data by JetBrains in the development

of a new C++ IDE, that is CLion found CMake to
have the highest adoption by the 4.4 million
worldwide C++ developer community

Science is not done by one person and
problems bigger

Courtesy SCOREC RPI

Remember Code is the language of Science

Robot Operating System (ROS)
Statistics
Metrics as of July 2015 (http://wiki.ros.org/Metrics):
○ Unique IPs downloading ROS debs: ~45,000/month
○ Academic papers citing original paper: 1843
○ Robot models officially supported: >101
○ wiki.ros.org pageviews: ~37,000/day

Longest distance a ROS robot
has traveled from Earth: 270

miles

ROS is BIG

• Almost 2000 packages in our Indigo
release: http://www.ros.org/debbuild/indigo.html

• All of those packages, as far as I know, are
CMake projects or at least wrapped in CMake.

• They are contributed by roughly 370 different
people/groups, based on the contributors to our
releases repo: https://github.com/ros/rosdistro

• CMake makes up ~6% (>12kLoC) of the ROS
Indigo code base (for desktop-full which is a
subset and what we consider the core).

http://www.ros.org/debbuild/indigo.html
https://github.com/ros/rosdistro

2000 CMake based packages in ROS

Why CMake? It’s easy, and works well
Typical Project without CMake (curl)
$ ls
CHANGES RELEASE-NOTES curl-config.in missing
CMake acinclude.m4 curl-style.el mkinstalldirs
CMakeLists.txt aclocal.m4 depcomp notes
build docs notes~
COPYING buildconf include packages
CVS buildconf.bat install-sh reconf
ChangeLog compile lib sample.emacs
Makefile config.guess libcurl.pc.in src
Makefile.am config.sub ltmain.sh tests
Makefile.in configure m4 vc6curl.dsw
README configure.ac maketgz

$ ls src/
CMakeLists.txt Makefile.riscos curlsrc.dsp hugehelp.h version.h
CVS Makefile.vc6 curlsrc.dsw macos writeenv.c
Makefile.Watcom Makefile.vc8 curlutil.c main.c writeenv.h
Makefile.am config-amigaos.h curlutil.h makefile.amiga writeout.c
Makefile.b32 config-mac.h getpass.c makefile.dj writeout.h
Makefile.in config-riscos.h getpass.h mkhelp.pl
Makefile.inc config-win32.h homedir.c setup.h
Makefile.m32 config.h.in homedir.h urlglob.c
Makefile.netware curl.rc hugehelp.c urlglob.h

• A build system
that just works

• A build system
that is easy to
use cross
platform

17

Why CMake? It’s fast
http://blog.qgis.org/?q=node/16 : “I was quite surprised with

the speed of building Quantum GIS codebase in
comparison to Autotools. “

Task CMake Autotools
Configure 0:08 Automake: 0:41

Configure: 0:20
Make 12:15 21:16
Install 0:20 0:36
Total 12:43 22:43

http://taskwarrior.org/projects/taskwarrior/n
ews

• Open-source cross-platform build manager using native tools
– Visual Studio 6, 7.1, 2005, 2008, 2010, 2012, 2013, 2014
– Borland make, Nmake, Unix make, MSYS make, MinGW make
– Ninja
– Xcode

• IDE Support
– Code::Blocks
– CodeLite
– Eclipse
– KDevelop
– Kate
– Sublime Text

CMake: Features

• OSes: HPUX, IRIX, Linux, Mac OSX, QNX, SunOS, Windows,
others

• Platform inspection commands can
– Search for

• Programs
• Libraries and Header files
• Packages

– Determine hardware specifics like byte order
• Compiler Feature Detection (CMake 3.1)

– target_compile_features

CMake: Features (cont.)

Why CMake? Quickly adapt to new
technologies
• New build IDE’s and compilers

– Visual Studio releases supported weeks after beta
comes out

– Xcode releases supported weeks after beta comes
out

– ninja (command line build tool from Google) support
contributed to CMake as ninja matured

• New compiler support
– clang
– gcc versions

• Support for complex custom commands
– Cuda support
– Qt’s moc

• Optional component support
• Shared library building (versions for .so supported)
• Create configured .h files
• Single input format for all platforms
• Automatic dependency generation (C, C++, Fortran)

– Full dependencies: build a target in some directory, and everything this
target depends on will be up to date

• Parallel builds
• Out of source builds

CMake: Features (cont.)

• Color and progress output for make
• Automatically rerun cmake if any cmake input files change (works

with Visual Studio using ide macros)
• Graphviz output for visualizing dependency trees
• Full cross platform install() system

CMake: Features (cont.)

CMake Documentation
• Mastering CMake Book
• Web Page: www.cmake.org
• http://www.cmake.org/Wiki/CMake
• mailing list: cmake@cmake.org

– Full reference documentation
– http://www.cmake.org/cmake/help/documentation.html

• Ships HTML, man, and command line help
– Tutorial included and tested in source tree (Tests/Tutorial/)
– reStructuredText and Sphinx
– configured files
– optional build components
– install rules, test properties
– system introspection

Cache Editors: cmake-gui (qt), ccmake (curses)

Running CMake From The Command Line

• Useful for scripted builds or for projects with no options
or with options correctly set by default on the first
configure

#CC=gcc; CXX=g++

#CFLAGS, CXXFLAGS

cd MyProjectSourceDir

mkdir ../MyProjectSourceDir-build

cd ../MyProjectSourceDir-build

cmake ../MyProjectSourceDir

(cmake –Dvar=value)

CMake Scripts

• cmake –E command
– Cross platform command line utility
– Ex. Copy file, Remove file, Compare and

conditionally copy, time etc
• cmake –P script.cmake

– Cross platform scripting utility
– Does not generate cmake_cache
– Ignores commands specific to generating

build environment

• Package config files come with installation
myproj-config.cmake

include(${DIR}/myproj-targets.cmake)

set(myproj_INCLUDE_DIRECTORIES

${PREFIX}/include/myproj)

myproj-config-version.cmake

set(PACKAGE_VERSION 1.3)

if("${PACKAGE_FIND_VERSION_MAJOR}" EQUAL 1)

set(PACKAGE_VERSION_COMPATIBLE 1)

endif()

• See “CMakePackageConfigHelpers” module for helper API

Creating Packages

Qt5 Ships with CMake config files

find_package(Qt5 COMPONENTS Widgets Declarative)
Add_executable(hello_world hello.cxx)
target_link_libraries(hello_world ${Qt5Widgets_LIBRARIES})

Usage Requirements – target
centric view not directory centric

Propagate
• Include Directories
• Compile Definitions
• Compile Options
• And More!

target_link_libraries and
target_include_directories
target_link_libraries - Lets talk different linking types
• PUBLIC
• PRIVATE
• INTERFACE

Target_include_directories - Bring include directories when
linking

target_include_directories(Foo INTERFACE
${zlib_dir})

• Anything that links to Foo will automatically have the
zlib_dir on the include line

target_compile_options(Foo PRIVATE
-fno-unused-parameter)

• Silence really chatty libraries that you can’t modify.

target_compile_definitions(Foo PUBLIC
“NDEBUG”)

• Foo will have NDEBUG defined and anything that links
to it will have that definition

target_compile_options and
target_compile_definitions

add_executable(new-app main.cxx)

target_compile_features(new-app
cxx_member_templates
cxx_constexpr
cxx_generic_lambda
)

write_compiler_feature_header(
FILE "mycompiler_detection.h"
PREFIX MyPrefix
FEATURES
cxx_static_assert
cxx_final
cxx_variadic_templates
)

Compiler Feature Detection

ExternalProject_add

• Module introduced in CMake 2.8
– Allows the download, configure, build and install of

software via custom commands

• Kitware Source Article: October 2009
– http://www.kitware.com/products/html/BuildingExterna

lProjectsWithCMake2.8.html

• Funded by Army Research Lab (ARL) –
Computational Science Environment (CSE)

Titan Example

Titan

VTK Qt Trilinos CurlCLAPCK
Google

Protocol
buffers

Boost

Test Data
Management
ExternalData

Distributed Version Control

• Meant for source code, not data
• Local history of source is good

– Often modified Æ interesting history
– Line-wise commits Æ good deltas
– Fast log, blame, etc.

• Local history of data is bad
– Rarely modified Æ boring history
– Whole-file commits Æ poor deltas
– No blame for binary files

Separating Data from Source

• Source must reference
data

• Tests need matching
data

• Links must be
unambiguous

• Links must be lightweight
• Answer: content hash

Data

1b83a0…

Source

Content-Addressed Storage

• Arbitrary locations
– Local machine
– Private server
– Internet server

• Content verified by hash
• No need to trust provider if hash is strong

Content-
Addressed

Storage

“0b2135”

0b2135

ExternalData Module - Source
• Start with real data file in source tree (locally)
• Source code references data by original file name

$ cat ../Data/BrainWeb/brainweb1e1a10f20.mha.md5
0b2135e2035e5bd84d82f4929e68fbdc

• Test works with real data file out of the box
• Then replace data file by a “content link”

$ cat CMakeLists.txt
ExternalData_add_test(ITKData

NAME CellularSegmentation2Test
COMMAND SegmentationExamples9 CellularSegmentation2Test

DATA{../Data/BrainWeb/brainweb1e1a10f20.mha}
...)

• Conversion to content link can be scripted
• Data go to local or remote content-addressed storage

ExternalData Module - Build
• Build system handles creation of local instance
• Fetches data from arbitrary content-addressed storage

$ make ITKData
Generating ExternalData/Examples/Data/BrainWeb/brainweb1e1a10f20.mha
-- Fetching "http://.../MD5/0b2135e2035e5bd84d82f4929e68fbdc"
-- [download 100% complete]
-- Downloaded object: "ExternalData/Objects/MD5/0b2135e2035e5bd84d82f4929e68fbdc"

$ bin/SegmentationExamples9 CellularSegmentation2Test \
ExternalData/Examples/Data/BrainWeb/brainweb1e1a10f20.mha ...

• Test uses local instance by original file name

• Original file name provided by symbolic link if possible
$ readlink ExternalData/Examples/Data/BrainWeb/brainweb1e1a10f20.mha
../../../Objects/MD5/0b2135e2035e5bd84d82f4929e68fbdc

ExternalData Module - Fetch
• Method is a black box

– Hidden from source code
– Can change in future without breaking old

versions
• Configured list of URL templates

– file:///local/%(algo)/%(hash)
– http://server.local/%(algo)/%(hash)
– http://midas.kitware.com/...?algorithm=%(algo)&hash=%(hash)

• Try each location in order
– Substitute for %(algo) and %(hash) in URL
– Download and check content hash
– Done if hash matches, else continue

“0b2135” 0b2135

Coming to CMake

• Android.mk generation for CMake built libraries
• Integrated Android platform support simplifying

tool chain file

Simple Qt Example
cmake_minimum_required(VERSION 2.8)
project(helloQt)
find required dependencies
find_package(Qt4 REQUIRED)
create the executable
add_executable(helloQt WIN32 MACOSX_BUNDLE myqt.cxx)
target_link_libraries(helloQt ${QT_QTMAIN_LIBRARY} ${QT_LIBRARIES})
installation and packaging
install(TARGETS helloQt DESTINATION bin)
include (InstallRequiredSystemLibraries)
set (CPACK_PACKAGE_VERSION_MAJOR "1")
set (CPACK_PACKAGE_VERSION_MINOR "0")
set(CPACK_PACKAGE_EXECUTABLES "helloQt" "Hello Qt")
include (CPack)

Simple Qt Example with Boost
cmake_minimum_required(VERSION 2.8)
project(helloQt)
find required dependencies
find_package(Qt4 REQUIRED)
include(${QT_USE_FILE})
set(Boost_USE_STATIC_LIBS ON)
find_package(Boost REQUIRED signals)
include_directories(${Boost_INCLUDE_DIRS})
create the executable
add_executable(helloQt WIN32 MACOSX_BUNDLE myqt.cxx)
target_link_libraries(helloQt ${QT_QTMAIN_LIBRARY} ${QT_LIBRARIES}
${Boost_LIBRARIES})

installation and packaging
install(TARGETS helloQt DESTINATION bin)
include (InstallRequiredSystemLibraries)
set (CPACK_PACKAGE_VERSION_MAJOR "1")
set (CPACK_PACKAGE_VERSION_MINOR "0")
set(CPACK_PACKAGE_EXECUTABLES "helloQt" "Hello Qt")
include (CPack)

Automatic Testing Benefits

“Automated Software Testing,”
1999, Dustin, et al, Addison Wesley

CDash Dashboard www.cdash.org

Six Sigma and Quality Research
Software (GE Research)

Six Sigma and Quality Research
Software

Errors / Defects

CDash can be used with other tools

• Jenkins – Project Tango and others
• Buildbot

– Extended buildbot to run the configure, build, and test steps for CMake-
based projects with support for uploading build artifacts (packages, logs,
etc.)

– Buildbot parses the output of CTest to determine error and warning
status

• Travis
• CircleCI
• Simple ctest cronjobs

CDash github/gitlab integration

– Buildbot is used to act on actions based on GitLab
comments to trigger builds

– Builds may be constrained to specific builders or
machines for targeted testing

– Buildbot reports back to merge requests once all the
relevant builders have completed with links to buildbot
itself

• include(CTest) or enable_testing() – enables the ADD_TEST
commands in a project

• add_test (testname exename arg1 arg2)
– Executable should return 0 for a test that passes

• ctest – an executable that is distributed with cmake that can run
tests in a project.

• CDash testing – Create web based dashboards to show the results
of tests for each day

Testing with CMake

Video of ParaView Nightly Testing

53

Trilinos (Multi-Package Dashboard)
http://trilinos-dev.sandia.gov/cdash/index.php

Main Project

Sub Projects

Coverage Display GCov/Bullseye

Valgrind / Purify

CDash Email Notification
A submission to CDash for the project CMake has failing tests.
You have been identified as one of the authors who have checked
in changes that are part of this submission or you are listed in the default contact list.

Details on the submission can be found at http://www.cdash.org/CDash/buildSummary.php?buildid=322849

Project: CMake
Site: destiny.kitware
Build Name: HP-UX-aCC
Build Time: 2009-04-29T14:28:00 EDT
Type: Continuous
Tests failing: 85

Tests failing (first 5)
SystemInformationNew (http://www.cdash.org/CDash/testDetails.php?test=21959894&build=322849)
CommandLineTest (http://www.cdash.org/CDash/testDetails.php?test=21959897&build=322849)
FindPackageTest (http://www.cdash.org/CDash/testDetails.php?test=21959898&build=322849)
FindModulesExecuteAll (http://www.cdash.org/CDash/testDetails.php?test=21959899&build=322849)
StringFileTest (http://www.cdash.org/CDash/testDetails.php?test=21959900&build=322849)

-CDash on www.cdash.org

CTest Command Wrappers Output

Query Filters : customize views

New clang based tool support

Clang tools cont

• iwyu (include what you use)
• Scanbuild

Software
Repository

Build, Test
& Package

Community
Review

Developers
& Users

Software Process – Reproducible
Results

What is CPack
• CPack is bundled with CMake

• Creates professional platform specific installers

• Supports CMake-based and non-CMake-based projects
• Unix

– TGZ and self-extracting TGZ (STGZ)
• Windows

– NullSoft Scriptable Install System (NSIS / NSIS64)
– WiX

• Mac OSX
– DragNDrop
– PackageMaker

• Deb
– Debian packages

• RPM
– RPM package manager

CPack Features

• On Windows install command line ZIP program, NSIS and WiX
• Setup your project to work with cpack

– Get make install to work
• install()
• make sure you executables work with relative paths and can work from any

directory
– Set cpack option variables if needed
– include(CPack)

Using CPack

CPack Components
http://www.cmake.org/Wiki/CMake:Component_Install_With_CPack

Examples of CMake Building Science

In The Beginning There Was VTK

Google Project Tango
Project Tango technology gives a mobile device the ability to navigate the physical
world similar to how we do as humans. Project Tango brings a new kind of spatial
perception to the Android device platform by adding advanced computer vision,
image processing, and special vision sensors.

Project Tango: community effort

SubProject Dependencies
Graph for Google Tango from
CDash

Computational Model Builder
and The Reactor Geometry
Generator Projects

Computational Model
Builder
• Goals:

– Develop an application framework that can be easily adapted to
specific problem domains

• Geometric Domain and Assembly Model Creation
• Simulation Creation
• Simulation Execution

– Quickly create custom applications/workflows
– Leverage existing and future simulators, meshers, and toolkits
– Develop a simulation model toolkit (SMTK) analogous to VTK for

supporting simulation models
– All development under BSD licensing

Simulation
Codes

Currently
Supported

Libraries Used in CMB
• SMTK
• VTK
• ParaView
• QT
• VXL
• MOAB
• CGM
• OpenCascade
• Boost
• ReMUs
• ZeroMQ

• Shiboken
• Lasso
• HDF5
• NetCDF
• Zlib
• PNG
• Szip
• Pugi XML
• MPI
• Gdal
• Ftgl

Reactor Geometry Generator (RGG)
Goals:
• Provide a set of easy to use model and mesh

generation components/applications that support
various Nuclear Energy Workflows

• Support Client/Server Framework as well as
HPC Environments

• Leverage existing efforts being developed within
the DOE

Model of a Sodium Cooled
Fast Reactor Core Modeled
& Meshed in RGG

Libraries Used in RGG
• VTK
• QT
• MOAB
• CGM
• OpenCascade
• Boost
• ReMUs
• ZeroMQ
• CUBIT

• Lasso
• HDF5
• NetCDF
• Zlib
• PNG
• Szip
• MPI
• Ftgl

Virtual Pediatric Airways Workbench
(VPAW) VPAW is a

surgical planning
system for
pediatric upper
airway
obstructions

3D interactive
editing of airway
geometry with 3D
input devices to
explore possible
surgical outcomes

Dependencies
built with CMake:
• VTK
• ITK
• VRPN
• quatlib
• jsoncpp
• CLAPACK

Case study
A B C

stenotic
region

pre-
operative

surgical
modeling

post-
operative

ARC Centre of Excellence
for Autonomous Systems- Australia

• The Argo is fully
automated with
the onboard
computers all
using code built
using CMake.
The Helicopter is
semi-automated
with the pilot
following a
course
determined by
the onboard
computers
interacting with
the Argo.
Everything uses
CMake. QNX
dashboard

ParaView is an open-source, multi-platform, data analysis and
visualization application for analyzing extremely large datasets using

distributed memory computing resources.

open-source

data analysis & vis

data analysis & vis

is

dependencies

● ~60K lines of CMake code (excluding ~160K lines of CMake code from
VTK)

● Uses superbuild for building dependencies, generating redistributable
packages, and cross compiling.

● Broad set of dependencies: Qt, Python (NumPy, Matplotlib), Boost, MPI,
CGNS, HDF5, fontconfig etc.

● Multi-platform building and packaging with CMake/CPack: OsX, Linux,
Windows

● Cross compile support:
○ BlueGene Q (Mira: Argonne Leadership Computing Facility)
○ Cray XK7 (Titan: Oak Ridge Leadership Computing Facility)

highlights

Example: 3DSlicer
An open-source platform for delivering image analysis
technology for personalized medicine research.

The Slicer Ecosystem
• Major building blocks:

VTK, ITK, CTK, Qt, Python,
Teem, PythonQt, ...

• Key infrastructure:
CMake, CTest, CDash,
MediaWiki, GitHub….

• Distribution mechanisms:
Extension manager for
software distribution,
data store for data
distribution

• Slicer for end-users

Graphic courtesy of JC Fillion-Robin, Kitware

Packages used by Slicer

• CTKAPPLAUNCHER, CTK, CTKResEdit, curl,
DCMTK, incrTcl, ITKv4, LibArchive, NUMPY,
OpenIGTLink, OpenSSL, PCRE, python-async,
python-chardet, python, python-gitdb, python-
GitPython, python-nose, python-pydicom,
python-PyGithub, python-setuptools, python-
smmap, qRestAPI, Qt4, SimpleITK,
SlicerExecutionModel, Swig, tcl, teem, tk,
VTKv6, zlib

Tracking peritumoral
white matter fibers

Diagnosis of
Different Tumors
in Lung Cancer

Prostate
procedures

Liver procedures

Surgical
navigation

Breast cancer
surgery guidance

Radiation dose
calculations

Model-Guided Deep
Brain Simulation

Diagnosis of Osteoarthritis
Degeneration

Quantitative assessment
of COPD

Clinical
users drive
creation of
technology

Examples of Clinical Projects

Slide courtesy of L. Cevidanes

Ryan Gessner Paul Dayton

• Improved “MRI-like” field of view
• Ability to study anatomical context of tumors over time
• High throughput acquisitions
• Multi-modality registration
• Improved blood vessel quantification

• SonoVol is a spinout from UNC Chapel Hill’s Joint
Department of Biomedical Engineering.

• Grad student and professor designed some robotic
hardware for improved preclinical ultrasound imaging

• Needed a software interface for controlling hardware,
and viewing image data.

Product vision

SonoVol A: "Case Study"

Kitware Computer
Vision

Object and Building
Recognition by

Function (DARPA)

Images,
Video,
Point

Clouds

Recognition
by Function

Content-
based

Retrieval

Event &
Activity

Recognition

Anomaly
Detection

3D Extraction
and

Compression

Detection
& Tracking

KWIVER Toolkit
Kitware Image and Video Exploitation and Retrieval
Toolkit

An Open Source, production-quality video exploitation system

• Engage the community: academic, industry, government

• Avoid expensive software duplication and redundancy, speed time to solution

• Leverage the “many eyes” of the community to improve quality, stability and
utility

• Bridge the gaps between research code Æ production software, initial feasibility
Æ operational evaluation

• Create a true open-source community for cooperative, distributed development
based upon available Open Source toolkits

• Scale down to a single researcher’s desktop and up to multi-node clusters

97

A KWIVER Enabled System

MAP-Tk VIBRANT ViVIA

Video Analytics System or Application

VITAL

Fletch

98

Fletch – A Computer Vision Tool Chest
Fletch uses CMake to fetch, configure, and
build a variety of Open Source Computer
Vision, Machine Learning, and C/C++
libraries, easing the set up of a KWIVER
development environment

Development Environment

Internet

Fetch
Configure
Build
Install

99

MAP-Tk
Motion-imagery Aerial Photogrammetry Toolkit

Hierarchical SBA

Homography-Driven Loop-Closure

SBA with
frame-to-frame

tracking only

SBA with
loop-closure

Homography sequence
with loop detected

91 Frames 4494 Frames

• Open source with permissive BSD license
https://github.com/kitware/maptk

• Highly modular, open framework
• OpenCL (GPU) accelerated feature detector and

descriptor option.
• Optimized for aerial video

processing
– Frame-to-frame homography

guided feature tracking
– Homography guided

loop-closure

• Recovery from bad frames
during tracking

• Temporally hierarchical
bundle adjustment

• Estimate shared,
but unknown, intrinsics

100

https://github.com/kitware/maptk

15 Years of CMake

• CMake just had a birthday and is 15, over that
decade and a half it has had a huge impact on
scientific efforts involving C/C++

Building Science with CMake

• Reproducible builds across multiple platforms
• Integration with CI testing tools
• Integration with Data tools allowing for algorithm

testing as well as unit testing
• Many domains: Medical imaging, Computer

Vision, Robotics, Nuclear Energy, many others
• Open Source enabling use by many

collaborators

Software
Repository

Build, Test
& Package

Community
Review

Developers
& Users

Thanks
- Many users and contributors of CMake
- Awesome developers at Kitware
- Google and the Google Tango Project

	Building Science with CMake�
	Bill Hoffman
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Science is becoming computation
	Failure of Reproducibility
	CMake came from open science
	How CMake Changes The Way We Build C++
	CMake most popular Kitware Tool
	CMake is the most popular build tool at 38%.�
	Science is not done by one person and problems bigger
	Slide Number 13
	Robot Operating System (ROS) Statistics
	ROS is BIG
	2000 CMake based packages in ROS
	Why CMake? It’s easy, and works well
	Why CMake? It’s fast
	CMake: Features
	CMake: Features (cont.)
	Why CMake? Quickly adapt to new technologies
	CMake: Features (cont.)
	CMake: Features (cont.)
	CMake Documentation
	Cache Editors: cmake-gui (qt), ccmake (curses)
	Running CMake From The Command Line
	CMake Scripts
	Creating Packages
	Qt5 Ships with CMake config files
	Usage Requirements – target centric view not directory centric	
	target_link_libraries and target_include_directories
	target_compile_options and target_compile_definitions
	Compiler Feature Detection
	ExternalProject_add
	Titan Example
	Test Data Management�ExternalData
	Distributed Version Control
	Separating Data from Source
	Content-Addressed Storage
	ExternalData Module - Source
	ExternalData Module - Build
	ExternalData Module - Fetch
	Coming to CMake
	Simple Qt Example
	Simple Qt Example with Boost
	Automatic Testing Benefits
	CDash Dashboard www.cdash.org
	Six Sigma and Quality Research Software (GE Research)
	Six Sigma and Quality Research Software
	CDash can be used with other tools
	CDash github/gitlab integration�
	Testing with CMake	
	Video of ParaView Nightly Testing
	Trilinos (Multi-Package Dashboard)�http://trilinos-dev.sandia.gov/cdash/index.php�
	Coverage Display GCov/Bullseye
	Valgrind / Purify
	CDash Email Notification
	CTest Command Wrappers Output
	Query Filters : customize views
	New clang based tool support
	Clang tools cont
	Slide Number 62
	What is CPack
	CPack Features
	Using CPack
	CPack Components
	Examples of CMake Building Science
	In The Beginning There Was VTK
	Google Project Tango
	Project Tango: community effort
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Computational Model Builder and The Reactor Geometry Generator Projects
	Computational Model�Builder
	Slide Number 76
	Libraries Used in CMB
	Reactor Geometry Generator (RGG)

	Slide Number 79
	Libraries Used in RGG
	Virtual Pediatric Airways Workbench (VPAW)
	Case study
	ARC Centre of Excellence�for Autonomous Systems- Australia
	Slide Number 84
	open-source
	data analysis & vis
	data analysis & vis
	dependencies
	highlights
	Example: 3DSlicer
	The Slicer Ecosystem
	Packages used by Slicer
	Examples of Clinical Projects
	Slide Number 94
	Slide Number 95
	Kitware Computer� Vision
	KWIVER Toolkit
	A KWIVER Enabled System
	Fletch – A Computer Vision Tool Chest
	MAP-Tk �Motion-imagery Aerial Photogrammetry Toolkit�
	15 Years of CMake
	Building Science with CMake
	Slide Number 103

